

OUTLINE

- Introduction to study
- Aim of the study
- Overview on synthesis of matrix and composite
- Mechanical tests and results
- Fracture surface analysis
- SEM (RISE)
- Raman Confocal Microscopy
- TEM
- Conclusions

INTRODUCTION TO STUDY

"...the supplies used to produce products in accordance to the needs of humans should not be depleted; and emissions caused by the production or disposal of products should have no negative impact on the environment..."

INTRODUCTION TO STUDY

What sets vegetable oil-based polymers apart from conventional polymers?

- More affordable
- Natural resources are readily available
- Properties similar to those of conventional polymers (or better)
- Some are biodegradable, non-toxic
- Low contribution to production of greenhouse gasses

Why castor oil?

- □ Non-edible
- Contains double bonds and hydroxyl groups = increased reactivity

INTRODUCTION TO STUDY

AIM OF STUDY

- Conduct research on non-polyurethane biopolymers
- Develop a maleated castor oil/polystyrene (MACO-PS)
 polymer matrix
- Reinforce the matrix with natural fibres
- Determine the mechanical properties of the matrix as well as the reinforced composite
- Compare these mechanical properties to those of GPPS (general purpose PS) and HIPS (high impact PS)
- Measure biodegradability of MACO-PS matrix

SYNTHESIS OF MATRIX

4-step process:

- 1. Maleation of castor oil
- 2. Formation of matrix with styrene (MACO-PS)
- 3. Hand layup process
- 4. Thermal curing

RESULTS OF MECHANICAL TESTS AND THERMAL ANALYSIS

Property	MACO-PS	GPPS	HIPS	Reinforced MACO-PS	Standard/ Method			
Flexural Properties								
UTS (MPa)	22.1	74.4	27.2	12.2				
Toughness (MPa)	3.94	1.12	3.24	> 2.76	ASTM D7264-15			
Strain at break	24.7 %	2.80 %	14.0 %	>31.4%	D/ 20-110			
Charpy Impact Test								
Impact strength (kJ/m2)	41.5	33.9	58.4	45.0	ASTM D6110			
Hardness								
Shore-D hardness	60.5	85.0	76.9	68.0	Durometer			

RESULTS OF MECHANICAL TESTS AND THERMAL ANALYSIS

Property	MACO-PS	GPPS	HIPS	Reinforced MACO-PS	Standard/ Method			
Tensile Properties								
UTS (MPa)	23	44.8	13.5	13.1				
Young's modulus (GPa)	1.0	3.3	1.5	0.3	ASTM D638-14			
Toughness (MPa)	2.53	0.61	3.19	1.0				
Strain at break	12.8 %	1.60 %	25.8 %	11.8 %				
Differential Scanning Calorimetry								
Tg (°C)	54.9 and 93.2	90-95	-85.2 and 104.3	-	Heating rate of 20°C/min			

MICROSCOPY METHODS

Fracture surfaces

Leica MZ 8 stereomicroscope

SEM

- □ WiTec RISE electron microscope
- Backscatter electron analysis
- Low vacuum in presence of small amount of moisture
- 20kV acceleration voltage
- □ 200x magnification

MICROSCOPY METHODS

Raman spectroscopy

- WiTec Alpha 300R confocal microscope
- □ 1-2mW laser power (solids) and 5mW (liquids)
- Integration time was 1.19s for spectra and 0.25s for maps

TEM

- Samples cut using Leica Reichert Ultracut S with a diamond blade (100nm sample thickness)
- Samples were vapour stained with $2\% \, OsO_4$ solution for 1hr and 16hrs; $0.6\% \, RuO_4$ for 30min
- □ FEI Tecnai G2 F20 X-Twin transmission electron microscope
- Operated at 200kV

FRACTURE SURFACES

FRACTURE SURFACES

Voids caused by absence of matrix

FRACTURE SURFACES

Fracture surface

SEM

SEM

RAMAN MAPPING

TEM

TEM

CONCLUSIONS

- The mechanical properties of the green MACO-PS matrix corresponds to those found for HIPS
- Fracture surfaces found for the tested materials backed the mechanical test results
- SEM was successfully used to identify the cause for weak mechanical properties of the reinforced composite
- Raman mapping together with TEM confirmed the morphology of the matrix to be either a random co-polymer or an interpenetrating polymer network

REFERENCES

- [1] N. Winterton, Chemistry for Sustainable Technologies: A Foundation, Cambridge, UK: RSC Publishing, 2011.
- [2] F. S. Guner, Y. Yagci and A. T. Erciyes, "Polymers from triglyceride oils," *Progress in Polymer Science*, vol. 31, pp. 633-670, 2006.
- [3] E. Mubofu, "Castor oil as a potential renewable resource for the production of functional materials," Sustainable Chemical Processes, vol. 4, no. 11, 2016.
- V. Patel, G. Dumancas, L. Viswanath, R. Maples and B. Subong, "Castor oil: properties, uses, and optimization of processing parameters in commercial production," *Lipid insights,* vol. 9, pp. 1-12, 2016.
- [5] G. Totaro, L. Cruciani, M. Vannini, G. Mazzola, D. Gioia, A. Celli and L. Sisti, "Synthesis of castor oilderived polyesters with antimicrobial activity," *European Polymer Journal*, vol. 56, pp. 174-184, 2014.
- [6] M. Mosiewicki, M. Aranguren and J. Borrajo, "Mechanical Properties of Linseed Oil Monoglyceride Maleate/Styrene Copolymers," *Journal of Applied Polymer Science*, vol. 97, pp. 825-836, 2005.
- [7] G. Lampman, D. Pavia, G. Kriz and J. Vyvyan, Spectroscopy, 4th ed., Brooks/Cole Cengage Learning, 2010.

Questions?

