e

Microstructural deterioration assessment of ex-service power plant steel using concentric backscatter imaging

Presented By: Melody van Rooyen, Supervisor: Prof TH Becker In collaboration with: CHRTEM, NMU (Dr. J Westraadt and Dr. G Marx)

Background – Power stations and creep

High temperature (> 550 °C), high steam pressures (>15 MPa)

iosrjournals.org

, Rack

Background – Material assessment

12 % Cr steel: X20CrMo12-1 (X20 for short)

Life fraction, $\frac{t}{t_r}$

Exservice X20

Damage state	Cavities/mm ²
New	Ideally none
Low	60-90
Medium	≈200
High	>220-690

Background – Microstructural analysis

Experimental description - Materials

Material Type: X20 CrMoV12-1	Virgin (New)	Low Damage	Medium Damage	High Damage
Cavity density measured from BSE-SEM (cavity/mm²)	<40	70-150	150-250	>250
Operating temperature (°C)	-	545	545	543
Operating steam pressure (MPa)	-	17.0	19.4	18.1
Operating life (hours)	-	130 000	130 000	156 000

Experimental description - Creep testing

DIC: Digital Image Correlation

Gleeble vacuum chamber

Experimental description – Creep testing (cont.)

Experimental description – Creep testing (cont.) SMATER

Experimental description – Microstructure

CBS-SEM: Concentric Backscatter-Scanning Electron Microscopy

CBS detector settings	Specimen preparation
 FIB-SEM 5 kV 0.20 nA 4 mm WD Total of 4 images per site (680 µm²) 	 Twin-jet electropolishin g 5 % HCIO₄ solution 21-30 V -20 °C

Evno

Experimental description – Micro. (cont.)

Results - Qualitative

Results – Quantitative (micro-grains)

Size or inter-particle spacing (nm)

Results – Quantitative (Precipitates)

Particle Inter-particle Volume number density size spacing

Volume number density (µm-³)

Pasi

Size or inter-particle spacing (nm)

Results – Quantitative (Precipitates)

Results - Hardness

Longitudinal distance from central gauge location

Mechanical response

Confirms CBS results: high Cr₂₃C₆ density enhances creep resistance despite cavity density

Conclusion

- CBS is a convenient microstructural method for micro-grain and large particle characterisation of ex-service material
- Highly damage material has large polygonal micro-grains, low density
 of carbides and high fraction of Laves phase especially near voids.
- Low damage has less Laves phase but had a lower density of carbides
 than medium
- Medium displays relatively smaller grains due to dense carbide distribution. Medium and low damage display similar creep rates despite differences in void distributions
- <u>Using CBS allows faster damage assessment through a single</u>
 <u>microstructural analysis stream faster maintenance decisions</u>

"No SINGLE measurement is sufficiently comprehensive to describe the [damage state of] the steel with all requisite completeness"

~ Bhadesia et al. (1998)

Creep Damage Assessment of Ex-Service 12% Cr Power Plant Steel Using Digital Image Correlation and Quantitative Microstructural Evaluation

by Melody van Rooven 1. Don't Don't

Materials 2019, 12(19), 3106; https://doi.org/10.3390/ma12193106

Received: 6 August 2019 / Revised: 28 August 2019 / Accepted: 9 September 2019 / Published: 24 September 2019

Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa

Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela University, Summerstrand, Port Elizabeth 6001, South Africa

Author to whom correspondence should be addressed.

Acknowledgements and questions

Thank you to the following:

Supervision:

Prof Thorsten Becker and Materials Engineering Research Group at SU

CBS-SEM imaging:

NMU CHRTEM team, Dr J Westraadt and Dr G Marx

Gleeble testing/specimen preparation facilities:

Prof Rob Knutsen and S. von Willingh at CME

Stakeholder guidance and material provision:

EPPEI staff and fellow students

Funding:

NRF (THRIP) and THUTHUKA, Frank Wilhelm Bursary Fund

MATENG group www0.sun.ac.za/mateng

ResearchGate

Melody Van Rooyen

II 5.04 · Master of Engineering · Edit