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Additive manufacturing (“3d printing”)
Selective laser melting or Laser Powder Bed Fusion
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Background - Metal additive manufacturing

1. Khairallah, S. A.; Anderson, A. T.; Rubenchik, A.; King, W. E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and 
formation mechanisms of pores, spatter, and denudation zones. Acta Materialia 2016, 108, 36–45,

2.     D. Raabe:3D Printing of Metals: Laser Additive Manufacturing (LAM) via Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) 
[ONLINE]: http://www.dierk-raabe.com/laser-additive-manufacturing/
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Background - Metal additive manufacturing

Argon flow
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One week and 3 434 layers later
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Background - Metal additive manufacturing

Recycled 
powder
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1. Advantages of additive manufacturing

• Manufacturing flexibilities (complex shapes)
• Environmentally sustainable (no material waist)
• Lead time reduction
• Manufacturing democratisation (customisation)

2. Advantages of Ti-6Al-4V

• Biocompatible (medical implants)
• Excellent mechanical properties: 
• Titanium is 30% stronger than steel, & 50% lighter (cost saving)
• Moderate temperature corrosion resistant ~ 400/500°C
• Example: Boeing saving $2-3 million per plane (2017)

3. Concern over achievable mechanical properties (quality)

• Martensitic microstructure -> poor ductility
• Poor fatigue life
• Residual stress
• Porosity
[1] W. Hoffmann, F.Schlottig, M.Mertmann, M. de Wild, D. Wendt, I. Martin, The interplay between NiTi-SMA and human bone marrow-derived mesenchymal stromal cell, Proceeding p. 46-47 
of the 4th International Symposium Interface Biology of Implants IBI, 9.-11. May 2012, Warnemünde/Rostock (Germany).
[2] R. Schumacher, M. de Wild, E. Schkommodau, D. Hradetzky, Massgeschneiderte Knochenimplantate aus dem  3D-Drucker,BaZ-Sonderbeilage "Life Sciences" vom 12. Mai (2012).
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Why MAM, why Ti6Al4V, why PhD?

[1]

[2]
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Aston, R. (2018). Boeing: 3D printing done right. [online] Boeing.com. Available at: https://www.boeing.com/features/innovation-
quarterly/nov2017/feature-thought-leadership-3d-printing.page [Accessed 14 Nov. 2018].
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Examples
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PhD technical background

Knowledge of process-structure-property links

• Porosity
• Microstructure
• Residual stress
• Surface roughness

Build process
• LPBF build parameters 
• (laser power, scan speed etc)
Post-process
• Thermal treatments
• Hot Isostatic Pressing

• Ductility
• Fracture toughness
• Fatigue
• Anisotropy

Presenter
Presentation Notes
Great advantages of using MAMManufacturing flexibilities (complex shapes) – topology optimised structuresEnvironmentally sustainable (minimal material waist)Lead time reductionTi6Al4VBiocompatible (medical implants)Excellent mechanical propertiesModerate temperature corrosion resistantConcern over achievable mechanical propertiesPhd -> tensile behavior, anisopy, build process (“intrinsic heat treatments”)
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PhD technical background

Knowledge of process-structure-property links

• Tensile deformation behaviour

• Thermal treatments

• Microstructure
• Residual stress
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Wrought Ti-6Al-4V

ASTM F2924–14 ---
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Wrought Ti-6Al-4V vs LPBF Ti-6Al-4V mechanical properties

[1]

[1]  Donachie, M. 2000. Titanium A Technical Guide, Ohio. 
[2]  M. Yan and P. Yu, “An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V — Comparison among 
Selective Laser     Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder,” in Sintering Techniques 
of Materials, INTECH, 2015, pp. 76–106.

[2] 

LPBF-produced Ti-6Al-4V
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Single phase hierarchical martensite structure (HCP)
Form through fast cooling
Large range in grain size
Dislocations and twinning
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As-built Ti-6Al-4V martensite (α’)
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Describe martensite, and its formationCommon process operations of thermomechanically produced TI64Post-process strategy for SLM-produced Ti64 needs to be optimisedDecompose martensite into stable α+β has been a focus of research – to improve ductility (ductile beta phase)
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• Duel-phase α+β
• Decomposition from α’  α+β (more ductile)
• Loss of strength due to α grain growth

3. Optimal - Bi-modal (α + α’)
• Unique contribution - fragmentation and globularisation of alpha grains
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Metallurgy and heat treatments
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Presentation Notes
Started this work in my master’s degree. Decompose martensite in stable α+βIn depth study in SSTR heat treatment. Key result was the obtaining a bi-modal microstructure which gave the best combination of strength and ductility.Improvement of material ductility has been achieved…what else is there?
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Aim of current work
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Motivation & aim

1. Improve material strength by annealing at lower temperature, while still relieving 
residual stress.

2. Apply knowledge to base-plate pre-heating strategies.

3. Key technical questions:

 What is the nature of martensite decomposition at low temperatures?
 How does it influence strength and ductility?
 Does Ti3Al form?
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Motivation and aim
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1. Samples
• Ti6Al4V ELI powder
• EOS M280 machine standard build parameters
• “Dog-bone” shapes (machined post-process)
• Vertical orientation
• Reference: 1000 °C 2 hours, furnace cooled (Stable α+β lamellar structure)

2. Temperatures: (427, 480, 560, 610 °C)
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Experimental approach

 Experiment/measurement  
Residual 
stress 

Hardness SEM  STEM Rietveld 
Refinement 

Tensile 
test 

As-built   - -   
Reference -   -  - 
Hold time  
5 min all all - 480 480 - 
15 min - 480, 560 - - 480 - 

1 hour 
all all - 480 480 480, 560, 

610 
8 hours - 610 - - - 610 
30 hours 427, 480 all all 480 all - 
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Residual stress profiles
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Microhardness profiles
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Early stages of phase transformation

Weight % (σ)

Ti Al V
1 89.4 (0.5) 4.3 (0.3) 4.3 (0.4)
2 89.5 (0.2) 4.3 (0.1) 6.2 (0.2)
3 81.9 (0.2) 4.5 (0.1) 13.6 (0.1)
4 78.5 (0.2) 3.8 (0.2) 17.8 (0.1)
5 80.7 (0.2) 4.3 (0.2) 15.0 (0.1)
6 79.7 (0.2) 4.2 (0.1) 16.1 (0.1)

480 ⁰C

HAADF-
STEM 

1 hour 30 hours5 min

  
 
 
 
 
 
 

 

2 

  

. 4 

. 3 

1
 2

 

Reference sample (stable α+β)
α 91.2 (0.2) 6.8 (0.1) 2.2 (0.1)
β 80.1 (0.2) 2.5 (0.1) 17.4(0.1)

Electron energy loss spectroscopy (EELS) 
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Micrographs and X-ray diffraction

560 ⁰C 610 ⁰C

Peak shift
Peak intensity changes

XRD Rietveld:
Beta phase fraction
560 ⁰C 30 hours   =   ~4.5 %
610 ⁰C 30 hours   =    ~6   %
Reference =    ~10.2 % 

480 ⁰C30 hours

BSD-
SEM 
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Lattice parameters transformation
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Tensile tests

Presenter
Presentation Notes
Ductility increase likely to beta phase volume increase
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1. Precipitation formation & phase transformation
• Nucleation and growth of β-phase precipitates
• Spinodal decomposition (Atom probe tomography)
• Incomplete phase transformation

2. Non-classical hardening
• No Ti3Al – due to low aluminium content in alpha phase
• α-β grain boundary strengthening
• Softening after 30 hours – beta phase increase, grain growth and lattice strain relaxation

22

Discussion
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In-depth study of initial martensite decomposition – embrittlement / strengthening

Non-classical hardening

Incomplete phase transformation (lattice parameter comparison to reference sample)

Recommendations:

1. Stress relief:
Above 560 °C for 1 hour or more (90 % stress relief)
OR 30 hours 480 °C (in-situ)

2. Strengthening
480 °C for 1 hour.
Use in addition to bi-modal (α+α’)

3. Ductility improvement
Annealing above 610 °C for longer than 8 hours.

23

Conclusion
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