Low temperature martensitic decomposition in laser powder bed fusion produced Ti-6AI-4V

Gerrit M. Ter Haar, Thorsten. H. Becker

Stellenbosch University Materials Engineering Research Group

December 2019

CLUB MYKONOS • LANGEBAAN • WESTERN CAPE

P

Background - Metal additive manufacturing

Additive **manufacturing** ("3d printing") Selective laser melting or **Laser Powder Bed Fusion**

2. D. Raabe:3D Printing of Metals: Laser Additive Manufacturing (LAM) via Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) [ONLINE]: http://www.dierk-raabe.com/laser-additive-manufacturing/

2

Argon flow

Background - Metal additive manufacturing

One week and 3 434 layers later

Why MAM, why Ti6Al4V, why PhD?

Advantages of additive manufacturing 1.

- Manufacturing flexibilities (complex shapes)
- Environmentally sustainable (no material waist)
- Lead time reduction
- Manufacturing democratisation (customisation)

2. Advantages of Ti-6AI-4V

- Biocompatible (medical implants)
- Excellent mechanical properties:
- Titanium is 30% stronger than steel, & 50% lighter (cost saving)
- Moderate temperature corrosion resistant ~ 400/500°C
- Example: Boeing saving \$2-3 million per plane (2017)

3. Concern over achievable mechanical properties (quality)

- Martensitic microstructure -> poor ductility
- Poor fatigue life
- **Residual stress**
- Porosity

[1] W. Hoffmann, F.Schlottig, M.Mertmann, M. de Wild, D. Wendt, I. Martin, The interplay between NiTi-SMA and human bone marrow-derived mesenchymal stromal cell, Proceeding p. 46-47 of the 4th International Symposium Interface Biology of Implants IBI, 9.-11. May 2012, Warnemünde/Rostock (Germany).

[2] R. Schumacher, M. de Wild, E. Schkommodau, D. Hradetzky, Massgeschneiderte Knochenimplantate aus dem 3D-Drucker, BaZ-Sonderbeilage "Life Sciences" vom 12. Mai (2012). 5

[1]

[2]

Examples

Aston, R. (2018). *Boeing: 3D printing done right*. [online] Boeing.com. Available at: https://www.boeing.com/features/innovationquarterly/nov2017/feature-thought-leadership-3d-printing.page [Accessed 14 Nov. 2018].

PhD technical background

Knowledge of process-structure-property links

- Ductility
- Fracture toughness
- Fatigue
- Anisotropy

Porosity

LINK

INK

- Microstructure
- Residual stress
- Surface roughness

Build process

- LPBF build parameters
- (laser power, scan speed etc)

Post-process

- Thermal treatments
- Hot Isostatic Pressing

PhD technical background

Knowledge of process-structure-property links

[1] Donachie, M. 2000. Titanium A Technical Guide, Ohio.

[2] M. Yan and P. Yu, "An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V — Comparison among Selective Laser Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder," in *Sintering Techniques of Materials*, INTECH, 2015, pp. 76–106.

Single phase hierarchical martensite structure (HCP) Form through fast cooling Large range in grain size Dislocations and twinning

Metallurgy and heat treatments

S MATERIA ENGINEERI

а

- Duel-phase α+β
- Decomposition from $\alpha' \rightarrow \alpha + \beta$ (more ductile)
- Loss of strength due to α grain growth

- 3. Optimal Bi-modal ($\alpha + \alpha$ ')
- Unique contribution fragmentation and globularisation of alpha grains

Article

Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties

Gerrit M. Ter Haar * 🔎 and Thorsten H. Becker

Materials Engineering Group, Department of Mechanical & Mechatronic Engineering,

University of Stellenbosch, Stellenbosch 7600, South Africa; tbecker@sun.ac.za

* Correspondence: gterhaar@sun.ac.za; Tel.: +27-21-808-4045

Received: 9 November 2017; Accepted: 15 December 2017; Published: 17 January 2018

Motivation & aim

- 1. Improve material strength by annealing at lower temperature, while still relieving residual stress.
- 2. Apply knowledge to base-plate pre-heating strategies.
- 3. Key technical questions:
 - □ What is the nature of martensite decomposition at **low** temperatures?
 - □ How does it influence strength and ductility?
 - **Does** Ti_3Al form?

Experimental approach

1. Samples

- Ti6Al4V ELI powder
- EOS M280 machine standard build parameters
- "Dog-bone" shapes (machined post-process)
- Vertical orientation
- **Reference**: 1000 °C 2 hours, furnace cooled (Stable α+β lamellar structure)
- 2. Temperatures: (427, 480, 560, 610 °C)

	Experiment/measurement						
	Residual	Hardness	SEM	STEM	Rietveld	Tensile	
	stress				Refinement	test	
As-built	~	>	-	-	>	\checkmark	
Reference	-	>	>	-	>	-	
Hold time							
5 min	all	all	-	480	480	-	
15 min	-	480, 560	-	-	480	-	
1 hour	all	all	-	480	480	480, 560,	
						610	
8 hours	-	610	-	-	-	610	
30 hours	427, 480	all	all	480	all	-	

AB – As-built

AB – As-built

Early stages of phase transformation

	Weight % (σ)				
	Ti	AI	V		
1	89.4 (0.5)	4.3 (0.3)	4.3 (0.4)		
2	89.5 (0.2)	4.3 (0.1)	6.2 (0.2)		
3	81.9 (0.2)	4.5 (0.1)	13.6 (0.1)		
4	78.5 (0.2)	3.8 (0.2)	17.8 (0.1)		
5	80.7 (0.2)	4.3 (0.2)	15.0 (0.1)		
6	79.7 (0.2)	4.2 (0.1)	16.1 (0.1)		

Reference sample (stable α+β)					
α	91.2 (0.2)	6.8 (0.1)	2.2 (0.1)		
β	80.1 (0.2)	2.5 (0.1)	17.4(0.1)		

Electron energy loss spectroscopy (EELS)

Micrographs and X-ray diffraction

30 hours

480 °C

560 °C

Peak shift Peak intensity changes

XRD Rietveld: Beta phase fraction $560 \ ^{\circ}C \ 30 \ hours = \ \sim 4.5 \ \%$ $610 \ ^{\circ}C \ 30 \ hours = \ \sim 6 \ \%$ Reference = \lapha 10.2 \%

Lattice parameters transformation

- **1. Precipitation formation & phase transformation**
- Nucleation and growth of β-phase precipitates
- Spinodal decomposition (Atom probe tomography)
- Incomplete phase transformation
- 2. Non-classical hardening
- No Ti_3AI due to low aluminium content in alpha phase
- α-β grain boundary strengthening
- Softening after 30 hours beta phase increase, grain growth and lattice strain relaxation

Conclusion

In-depth study of initial martensite decomposition – embrittlement / strengthening

Non-classical hardening

Incomplete phase transformation (lattice parameter comparison to reference sample)

Recommendations:

1. Stress relief:

Above 560 °C for 1 hour or more (90 % stress relief) OR 30 hours 480 °C (in-situ)

2. Strengthening

480 °C for 1 hour. Use in addition to bi-modal (α + α ')

3. Ductility improvement

Annealing above 610 °C for longer than 8 hours.

Funding:Department of Science and InnovationCSIR's Collaborative Program for
Additive Manufacturing (CPAM) project

STEM – Nelson Mandela University (CHRTEM) Johan Westraadt

SEM – CAF (Stellenbosch University)

NECSA – Residual stress

Follow: the project on Research gate Collaborate with Materials Engineering research group Stellenbosch www.sun.ac.za/mateng

Contact: <u>gterhaar@sun.ac.za</u> or **Linked in**, tbecker@sun.ac.za

UNIVERSITEIT STELLENBOSCH UNIVERSITY

science & innovation

Department: Science and Innovation REPUBLIC OF SOUTH AFRICA

